olor Your Commute:

A Guide to Vibrant Transit Lines

Madalina Bulat, Olivia Mei, Felipe Min

ABSTRACT

Transit maps are a useful tool in navigating transportation. Despite its necessity many maps, including the FSU bus system, are difficult to read and especially inaccessible to hose with color vision defic colors. Our program generates n colors that are different from each other; these colors are different for both the average population as well as for colorblind individuals. To produce an optimal set of colors, we used a perceptually uniform color space, Oklab, to accurately maximize the minimum Euclicean distance
between any two colors from the set of colors for those with deuteranopia. After accounting for a common color vision deficiency, we further optimize our color set for normal vision and then integrate our color generating program into a functional website, giving users the opportunity to interact with our code. When we compare our in color contrasts.

METHODS

Oklab is a perceptually uniform color space that allows us to accurately calculate the Euclidean distance between two colors so that we can determine how "different" the colors are from each other. In order to utilize this color space, we must first conver the colors from the most commonly used color space: sRGB. We do this through implementing conversions from sRGB to sRGB-1 to linear RGB [1], and finally Oklab [2] using JavaScript:
$C_{\text {linear }}= \begin{cases}\frac{C_{\text {SRGB }}}{12.92}, & C_{\text {SRGB }} \leq 0.04045 \\ \left(\frac{C_{\text {SRGB }}+0.0555}{1.055}\right)^{2.4} & C_{\text {SRGB }}>0.04045\end{cases}$
$\left(\begin{array}{l}L \\ a \\ b\end{array}\right)=\left(\begin{array}{ccc}0.2104542553 & 0.7936177850 & -0.0040720468 \\ 1.9779984951 & -2.428592050 & 0.4505937099 \\ 0.0259040371 & 0.7827717662 & -0.8086757660\end{array}\right)\left(\begin{array}{l}\sqrt[3]{l} \\ \sqrt[3]{m} \\ \sqrt[3]{s}\end{array}\right)$
$\left(\begin{array}{l}l \\ m \\ s\end{array}\right)=\left(\begin{array}{lll}0.8189330101 & 0.3618667424 & -0.1288597137 \\ 0.03293845336 & 0.02933118715 & 0.0361456387 \\ 0.0482003018 & 0.2643662691 & 0.6338517070\end{array}\right)\left(\begin{array}{l}R_{\text {linear }} \\ C_{\text {lininar }} \\ B_{\text {linear }}\end{array}\right)$

Because we also want to better accommodate people with color vision deficiency (CVD), we need to be able to represent what a colorblind person might see whe
viewing our set of colors. A simulation was performed [3] where they constructed matrices that translate colors from a linear RGB color space to an interpretation of how those with varying degrees of color vision deficiency sees color. The matrix found for representing 100% severity is:

$$
C V D=\left(\begin{array}{ccc}
0.367322 & 0.860646 & -0.227968 \\
0.280085 & 0.672501 & 0.047413 \\
-0.01182 & 0.04294 & 0.968881
\end{array}\right)
$$

Using this matrix, we can determine the color that people with deuteranomaly see by multiplying the matrix with the original color. When the colors are in the right colo space, we can generate and calculate the optimal set of colors
To generate n colors that are as perceptually apart as possible from each other, w utilize a greedy randomized adaptive search procedure (GRASP) to heuristically choose colors that have a large Euclidean distance from one another for those with deuteranomaly CVD [4]. Once optimized for CVD, we search along the null space of the color CVD matrix to further optimize the set of colors for standard vision, allowing us to accommodate those with vision deficiencies while still improving ho
the average population sees out color sets. The null space is given by:
nullspace $($ CVD $)=$ span $\left\{\left(\begin{array}{c}0.92205465 \\ -0.38601957 \\ 0.02835689\end{array}\right)\right\}$

Figure 1: FSU Bus Lines vs Generated Colors

Extracted colors from the FSU bus map and applied the Deuteranomaly CVD matrix

CONCLUSION

Altering transit map line colors can make a significant improvement in the legibility of he map, especially for people with color vision deficiency. Our research has shown th uniform color space, we can optimize the colors to have greater contrast and visibility for a more diverse population of people.

Moving forward, we aim to improve our program by CVD calculations and enhance the methods we use to calculate distances betwer colors.
ens with our carrent CVD matrix is that it contains negative numbers, meanis that it is possible for us to calculate a negative value in a color, which lies outside the developed to because of this issue, there have been other, more complicated, metho developed to convert colors to a CVD simulated color space that we could adopt. In addition, we can improve our calculations by choosing to use a color space that uniform and easy to use, further research on colors have led people to develop more accurate and uniform systems.
We also aspire to enhance our website's user experience by incorporating mor features that can better accommodate their needs. Some examples of features to ace generating the whole set of colors from scratch and extracting the line colors from user uploaded image of a subway map.

Overall, improving transit map line colors requires careful consideration of user need nd preferences, as well as a thorough understanding of color theory and accessibili can create maps that are more user-friendly and accessible to all passengers.

REFERENCES

[1] J.Y. Hardeberg, "Acquisition and Reproduction of Colour Images: Colorimetric and Multispectral Approaches," doctoral dissertation, École Nationale Supérieure de Télécommunications de Paris, 2001
[2] B. Ottosson, "A perceptual color space for Image Processing," Björn Ottosson, 23 Dec-2020. [Online] Available http://bottossonsithub.io/posts/oklab/. [Accessed: 20 [3] G. M. Machado, M. M. Oliveira and L. A. F. Fernandes, "A Physiologically-based Model for Simulation of Color Vision Deficiency," in IEEE Transactions on Visualizatio and Computer Graphics, vol. 15, no. 6, pp. 1291-1298, Nov.-Dec. 2009, doi 10.1109/TVCG.2009.113
, "Computational aspects of the maximum diversity problem," Operation N. Smith. 2017. vol. 19, no. 4, pp. 175-181, 1996.
orspacious documentation 2017. Retrieved from
observed improvements in the minimum Euclidean distance between any two colors, the average Euclidean distance between all colors, and the minimum Eucliden distance between any two colors from a deuteranopia colorblind perspective. In Figure 1, the set of colors on the left represents FSU's current bus map colors from the perspective of average vision compared to deuteranopia while the right side represents one set of colors our website generated. It's visibly evident that it is easier to deuteranopia vision.

We quantified these results in Figure 2, by calculating the Euclidean distances between all colors in the set using the Python library Colorspacious [5], where the larger the distance, the more differen the colors are. When comparing our set's distances to not only FSU's bus map but to other widely used transit maps from major cities, we observe a noticeable improvement in the measurements,

Ady
Additionally, we created a website that showcases our research findings. The website is hosted on GitHub, which allows us to easily collaborate and share our work with others. Through the website, visitors can learn about our methodology and generate colors themselve.

ACKNOWLEDGEMENTS

We would like to give a special thank you to our research mentors, Dr. Man Cheung Tsu
and Dr. Cindy Lester, for their invaluable guidance, support, and encouragemen throughout this project.

